Comparison of Genome Sequencing and Clinical Genotyping for Pharmacogenes

Wenjian Yang, PhD

Lab of Mary V. Relling, PharmD St Jude Children's Research Hospital, Memphis, TN

Clinical Pharmacology & Therapeutics

Explore this journal >

Research

Comparison of genome sequencing and clinical genotyping for pharmacogenes

W Yang, G Wu, U Broeckel, CA Smith, V Turner, CE Haidar, S Wang, R Carter, SE Karol, G Neale, KR Crews, JJ Yang, CG Mullighan, JR Downing, WE Evans, MV Relling ⊠

First published: 18 August 2016 Full publication history

DOI: 10.1002/cpt.411 View/save citation

http://www.ncbi.nlm.nih.gov/pubmed/27311679

Background

- St Jude Children's Research Hospital has been among the first to implement preemptive genomic testing to incorporate pharmacogenetics results in the medical record to assist in patient care.
- Recent St Jude protocol "*PGEN4Kids*" has implemented pharmacogenetics testing using pharmacogene-directed arrays such as the Affymetrix DMET plus array.
- Recently next generation sequencing (NGS) technology has experienced great advances, with lower cost and higher accuracies.
- Many NGS data have been generated at St Jude as part of research projects, such as Pediatric Cancer Genome Project (PCGP).

Objective

- 1. To examine the interrogation from genome sequencing technology for actionable pharmacogenes.
- 2. To compare the concordance between genotypes generated by genome sequencing and our clinical array-based genotyping results.

Basic Introduction of Next Generation Sequencing (NGS):

Basic Quality Controls metrics in NGS:

Coverage (read depth)

- Average WGS, 30X
- Average WES, 60X
- Read depth < 10X, considered "NoCall"

minor allele fractions (MAFrac)

- Heterzyous genotypes should be close to 0.5 (50%)
- Low allele fraction is questionable, suggesting contamination, sequencing error, etc.

Other QC: strand bias, Base quality, etc

Distribution of minor allele fraction of heterozygous calls in NGS

Minor allele fraction in heterzygous genotypes by WES

Patient Data

Clinical Genotyping (Affymetrix DMET Plus Array v1)

• N = 2656 (1319 whites, 998 blacks, 232 Hispanics)

Whole Genome Sequencing (WGS)

- N = 68 (44 whites, 18 blacks)
- all 68 patients have both DMET array and WGS

Whole Exome Sequencing (WES)

- N=636 (396 whites, 95 blacks, 86 Hispanics)
- 176 patients have both DMET array and WES

CPIC Important Genes and Variants

CPIC Important Genes: (n=13)

CFTR, CYP2C19, CYP2C9, , CYP2D6, CYP3A4, DPYD, G6PD,

HLA-B, IFNL3, SLCO1B1, TPMT, UGT1A1, VKORC1

(collected from https://www.pharmgkb.org/view/dosing-guidelines.do?source=CPIC as of 07/01/2015)

	HOME PUBLICATIONS FEEDBACK SIGN IN @ Search PharmGKB	Search
About Us + News & Ev	ents CPIC Projects Search - Download Help	
Dosing Guidelin	es - CPIC	
hese dosing guidelines take idvancement of Pharmacy - F	into consideration patient genotype and have been published by the <u>Clinical Pharmacogenetics Implementation Consortium</u> (IPe), the <u>Royal Dutch Associat</u> <u>Pharmacogenetics Working Group</u> (Inanually curated by PharmGKB), or other professional society (IRG) (manually curated by PharmGKB).	tion for the
Filter: CPIC	•	
Drug	Guidelines Upda	ited
abacavir	CPIC Guideline for abacavir and HLA-B 09/30	2014
allopurinol	CPIC Guideline for allopurinol and HLA-B 06/12	22015
amitriptyline	CPIC Guideline for amitriptyline and CYP2C19.CYP2D6 02/07	1/2014
atazanavir	CPIC Guideline for atazanavir and UGT1A1 09/18	3/2015
azathioprine	CRC CPIC Guideline for azathioprine and TPMT 05/10	2/2016
capecitabine	CRC CPIC Guideline for capecitabine and DPYD 08/06	\$/2014
arbamazepine	CRC CPIC Guideline for carbamazepine and HLA-B 02/07	1/2014
citalopram	CPIC Guideline for citalopram.escitalopram and CYP2C19 05/11	/2015

CPIC important variants

Based on gene activities associated with variants from supplemental table of published CPIC guidelines

- Variants associated with increase/decreased/no-function were considered important.
- Exclude variants with **unknown** function and **normal** functions.

SUPPLEMENTAL TABLE S2. ASSOCIATION BETWEEN ALLELIC VARIANTS^A

AND CYP2D6 ENZYME ACTIVITY

	Functional Status (2, 7)	Activity Value ^{c,d}	Alleles
	Increased function	>1	*1xN, *2xN, *35xN, *45 ^g xN
	Normal or Increased function	1 or >1 ^h	*9xN, *10xN, *17xN, *29xN,
	roma of mercased function	101-1	*41xN
	Normal function ^b	1	*1°, *2, *27, *33, *34 ^r , *35,
		-	*39 ^f , *45 ^g , *46 ^g , *48, *53
	Decreased function	0.5	*9, *10, *14B,*17, *29, *41,
			*49, *50, *54, *55, *59, *72
			*3, *3xN, *4, *4xN, *5, *6,
			*6xN, *7, *8, *11, *12, *13,
▶	No-function	0	*14A, *15, *18, *19, *20, *21,
			*31, *36, *36xN, *38, *40,
			*42, *44, *47, *51, *56, *57,
			*62, *68, *69, *92, *100, *101
			*22, *23, *24, *25, *26, *28,
			*30, *32, *37, *43, *43xN,
			*52, *58, *60, *61, *63, *64,
	Unknown	N/A	*65, *70, *71, *73, *74, *75,
			*81, *82, *83, *84, *85, *86,
			*87, *88, *89, *90, *91, *93,
			*94, *95, *96, *97, *98, *102,
			*103, *104, *105

* CPIC Guideline for codeine and CYP2D6

CPIC Important Variants: (n=127)

- 103 Single Nucleotide Variation (SNV) (95 exonic)
- 21 Indels/repeats (20 exonic)
- two structural variants (CYP2D6), Copy Number Variation (CNV) and CYP2D6/2D7 hybrid
- one haplotype (*HLA-B*)

	Number of CPIC important variants					
Gene	SNV (exonic)	Indel (exonic)	Other	Total		
CFTR	10 (10)	2 (2)		12		
CYP2C19	8 (7)	0		8		
CYP2C9	10 (10)	2 (2)		12		
CYP2D6	26 (24)	13 (13)	2 structural variations	41		
СҮРЗА5	2 (1)	1 (1)		3		
DPYD	10 (10)	2 (2)		12		
G6PD	7 (7)	0		7		
HLA-B	0	0	1 haplotype	1		
IFNL3	2 (0)	0		2		
SLCO1B1	12 (11)	0		12		
ТРМТ	15 (15)	0		15		
UGT1A1	0	1 (0)		1		
VKORC1	1 (0)	0		1		
Total	103 (95)	21 (20)	3	127		

Analysis pipelines used to generate genotypes

Affymetrix DMET Plus Array v1 (231 genes, 1936 variants)

• DMET Console software from Affymetrix

Whole Exome and Whole Genome Sequencing

- GATK v3.4 for SNVs and Indels, following best practice guideline, with recommended parameters and quality control steps.
- XHMM and CONSERTING for CNV estimation.
- Polysolver and OptiType for inferring *HLA-B* alleles.

1.CFTR

DMET: not interrogated **WES**: good coverage **WGS**: good coverage

No discordant genotypes between WGS and WES

Drug: ivacaftor

CPIC important Variants (n=12):

- 10 exonic SNV
- 2 exonic indels

Call Rate Minor Allele Frequency Concordance G178R F508del(TCT) DMET WES WGS DMET WES WGS WES/DMET WGS/DMET WGS/WES F508del(CTT) (n=2656) (n=636) (n=68) (n=176) (n=68) (n=16) S549R(A>C) CFTR S549N S549R(T>G) G551S G551D G1244E S1251N S1255P not interrogated monomorphic 100% concordant (polymorphic) G1349D 100% concordant (monomorphic) MAE < 1%call rate < 98%<100% concordant MAF >=1% call rate>=98% <100% concordant (low callrate) п

2.CYP2C19

DMET: good coverage **WES**: missing important intronic variant *CYP2C19**17, associated with increase activity **WGS**: good coverage

No discordant genotypes were observed

Drug: Clopidogrel, Amitriptyline, citalopram, clomipramine, doxepin, imipramine, setraline, trimipramine

CPIC Important Variants (n=8):

• 8 SNV (7 exonic)

3. CYP2C9

DMET: low call rate on R150H (*8) and not interrogated very rare variant I327T (*31); both "possible decreased activity" WES: good coverage WGS: good coverage

No discordant genotypes were observed.

Drug: Warfarin, Phenytoin

Important Variants (n=12):

- 10 exonic SNVs
- 2 exonic Indels

4. CYP2D6

CPIC Important Variants (n=41):

- 26 SNV (24 exonic)
- 13 exonic Indels
- 2 structural variations (CNV, CYP2D6/2D7 hybrid)

Drug: amitriptyline, clomipramine, codeine, desipramine, doxepin, fluvoxamine, imipramine, nortriptyline, paroxetine, trimipramine.

Clinical Genotyping:

- o Affymetrix **DMET** interrogated 23 SNV/Indels.
- CNV and CYP2D6/2D7 were interrogated by add-on qPCR assay.

WES:

- o interrogated 36 SNV/indels.
- CNV can be inferred, CYP2D6/2D7 not interrogated.

WGS:

- o Interrogated 35 SNV/Indels.
- o CNV can be inferred, CYP2D6/2D7 not interrogated.

CYP2D6: SNVs and Indels (n=39)

CYP2D6 discordant genotyping calls between DMET and WES

							Minor	
			DMET	WES	Reference	Alternative	Allele	
Gene	Allele	dbSNP	Call	Call	Allele Count	Allele Count	Fraction	Comment
								WES low minor allele
CYP2D6	*20 (1973insG)	rs72549354	Т/Т	T/TC	364	57	13.5%	fraction
								WES low minor allele
CYP2D6	*20 (1973insG)	rs72549354	Т/Т	T/TC	278	51	15.5%	fraction
								WES low minor allele
CYP2D6	*4 (1846G>A)	rs3892097	T/T	C/T	10	83	10.8%	fraction
								WES low minor allele
CYP2D6	*4 (1846G>A)	rs3892097	Т/Т	C/T	15	133	10.1%	fraction
								WES low minor allele
CYP2D6	*2 (R296C)	rs16947	A/A	A/G	71	9	11.3%	fraction
	*40							Reason for
CYP2D6	(1863_1864ins)	rs72549356	-/18bps	-/-	138	0	0.0%	discrepancy unclear
	*40							Reason for
CYP2D6	(1863_1864ins)	rs72549356	-/18bps	-/-	292	0	0.0%	discrepancy unclear

5 out of 7 discordant calls have low WES MAFraction, suggesting WES results may be suspect.

CYP2D6 discordant genotyping calls between DMET and WGS

							Minor	
			DMET		Reference	Alternative	Allele	
Gene	Allele	dbSNP	Call	WGS Call	Allele Count	Allele Count	Fraction	Comments
CYP2D6	*20 (1973insG)	rs72549354	Т/Т	т/тс	42	6	12.5%	WGS low MAFraction
								Reason for
	*40							discrepancy
CYP2D6	(1863_1864ins)	rs72549356	-/18bps	-/-	30	0	0.0%	unclear
								Reason for
	*40							discrepancy
CYP2D6	(1863_1864ins)	rs72549356	-/18bps	-/-	32	0	0.0%	unclear

CYP2D6 Copy number can be inferred by WES

DMET CNV was inferred by qPCR add-on assay WES CNV was inferred by XHMM

Concordance: 98/105 (93.3%), 3 of 7 discordant calls are possibly CYP2D6/2D7 hybrid

Haplotype composition for CYP2D6 (3N) can be inferred by WES

Alt/Ref read depth ratio = 2 Log2(Alt/Ref read depth ratio) = 1.0 Inferred haplotypes: 1/2/2 Alt/Ref read depth ratio = 0.5Log2(Alt/Ref read depth ratio) = -1.0Inferred haplotypes: *1/*1/*2

patient	chr22:4252669 4 (P34S, *4)	chr22:42524947 (1846G>A, *4)	chr22:42522613 (S486T, *2, *4)	chr22:42523943 (R296C, *2)	chr22:42524178 (2615delAAG, *9)	WES CNV	qPCR CNV	Haplotype composition	Comment
1	Hom_Ref	Hom_Ref	1.093	0.813	Hom_Ref	3N	3N	*1/*2/*2	
2	Hom_Ref	Hom_Ref	1.052	1.222	Hom_Ref	3N	3N	*1/*2/*2	
3	Hom_Ref	Hom_Ref	-1.141	-0.955	Hom_Ref	3N	3N	*1/*1/*2	
4	-0.781	-1.188	Hom_Alt	0.595	Hom_Ref	3N	3N	*2/*2/*4	
5	-0.933	-1.322	-1.000	Ref	Hom_Ref	3N	3N	*1/*1/*4	

Constellation for CYP2D6 (Twist GP, et al, Genomic Medicine 2016; Gaedigk GA, ASHG 2015)

5. CYP3A5

DMET: Good Coverage **WES**: missing important intronic variant CYP3A5*3 **WGS**: Good coverage

No discordant calls were observed

Drug: tacrolimus

Important Variants (n=3):

- 2 SNV (1 exonic)
- 1 exonic Indel

6. DPYD

DMET: not interrogating rs67376798 (Important) and two rare variants *12
WES: good coverage
WGS: good coverage

No discordant genotypes were observed.

Drug: capecitabine, fluorouracil, tegafur

Important Variants (n=12):

- 10 exonic SNV
- 2 exonic Indel

7. G6PD

DMET: missing important variants, e.g. common variants Asahi; and other rare variantsWES: Good coverageWGS: lower call rate in many positions due to lower coverage

No discordant calls were observed

Drug: rasburicase

Important Variants (n=7):

• 7 exonic variants (PharmGKB 2015)

Coverage of G6PD by Gender

Blue: Females; Green: Males

Solid line: median coverage Dashed line: 5% patients have coverage below the dashed line

G6PD SNPs in Public Database and interrogated in SNPCHIPs

Over 100 important rare variants (WHO class I/II). DMET Plus v1 only interrogates six variants.

8. IFNL3

DMET: not on DMET array; **WES**: upstream variants not targeted **WGS**: Good coverage Drug: peginterferon alfa-2, ribavirin

Important Variants (n=2):

• 2 variants upstream of the gene

9. SLCO1B1

DMET: missing rare variant *23; low call rate at *35 **WES**: missing promoter SNP *SLCO1B1**17 **WGS**: good coverage Drug: simvastatin

Important Variants (n=12):

• 12 SNVs (11 exonic)

No discordant genotypes were observed.

10. *TPMT*

DMET: interrogates most common variants;rare variants not interrogatedWES: good coverageWGS: good coverage

One discordant genotype observed between WGS and DMET

Drug: azathioprine, mercaptopurine, thioguanine

Important Variants (n=15)

15 exonic SNVs

Only one *TPMT* discordant genotyping call between DMET and WGS

Allele	dbSNP	DMET Call	WGS Call	Read Count (Reference Allele, C)	Read Count (Alternative Allele, T)	Minor Allele Fraction
* <i>3B,*3A</i> (A154T)	rs1800460	C/C	C/T	24	25	49.0%

WGS genotype has good quality: high coverage (24+25) and good minor allele fraction (49.0%).

Orthogonal PCR-RFLP method confirmed WGS genotype for this patient.

Affymetrix DMET Plus v1 result for rs1800460 can be erroneous, add-on reflex tested has been included as part of the clinical testing.

11. UGT1A1

DMET: low call rate for UGT1A1*28 **WES**: good coverage **WGS**: good coverage

No discordant genotypes between WES and WGS

Drug: atazanavir

Important Variants (n=1):

• 1 repeat (promoter)

UGT1A1 concordance between locus-specific PCR and WES/WGS

	WES (n=240)		
PCR	(TA)5or6/(TA)5or6	(TA)5or6/(TA)7or8	(TA)7or8/(TA)7or8
(TA)5or6/(TA)5or6	103	0	0
(TA)5or6/(TA)7or8	0	102	0
(TA)7or8/(TA)7or8	0	3*	32

- Discordant WES genotypes (*) have minor allele fractions lower than 15%, suggesting that WES calls are suspect in these cases.
- Possibility to improve WES genotyping accuracy by introduce additional minor allele fractions cutoff.
- Only 6 patients have both PCR and WGS, all genotypes concordant.
- WES and WGS have all concordant genotypes.

12. VKORC1

DMET: good coverage **WES:** missing the important variant **WGS**: good coverage

No discordant genotypes were observed.

Drug: warfarin

Important Variants (n=1):

1 promoter SNV

13a. HLA-B Haplotyping

Drug: abacavir, allopurinol, carbamazepine, phenytoin

Not interrogated on DMET plus V1

WGS (Optitype)

- Comparing with Clinical HLA typing (n=16)
- 4-digit (29 out of 32 haplotypes)
- 2-digit (31 out of 32 haplotypes)
- *HLA-B*5701* and *HLA-B*5801* were inferred correctly

13b. HLA-B haplotyping

Not interrogated on DMET plus V1

WES (Polysolver)

- Comparing with Clinical HLA typing (n=66)
- 4 digits (126 out of 132 haplotypes)
- 2 digits (130 out of 132 haplotypes)
- *HLA-B*5701* and *HLA-B*5801* were inferred correctly

Overall Comparison of Variants Across Platforms

Not including CYP2D6 structural variations and HLA-B haplotyping

Summary of Performance by Gene

	Affymetrix DMET and add-on	Whole exome	Whole Genome
Gene	assays	sequencing	sequencing
CFTR	Not interrogated	Good	Good
CYP2C19	Good	missing *17	Good
CYP2C9	Good	Good	Good
			missing 2D6/2D7
CYP2D6	Good	missing 2D6/2D7 hybrid	hybrid
СҮРЗА5	Good	Missing important variants	Good
DPYD	9 (Missing important variants)	Good	Good
			Good; lower callrate
G6PD	Missing important variants	Good	due to CNV
HLA-B	Not interrogated	Good	Good
IFNL3	Not interrogated	Missing important variants	Good
SLCO1B1	Good, missing *23,*35	Good, missing *17	Good
TPMT	Good with add-on for *3B	Good	Good
UGT1A1	Low Call rate	Good	Good
VKORC1	Good	Missing important variants	Good

Additional coding variants discovered by NGS

Nonsense:

- WES (n=636): 9 nonsense variants, (2 CFTR, 1 CYP2D6, 3 CYP3A5, 1 DPYD and 2 SLCO1B1)
- WGS (n=68): 2 nonsense variants (1 CYP2C9 and 1 CYP3A5)

Missense variants:

- WES: 153 missense variants
- WGS: 66 missense variants

Most the variants were reported in public exome database.(ExAC http://exac.broadinstitute.org) Function consequences are not clear.

Coverage of coding region of CPIC genes by NGS

	WES		WGS	
Gene	Average Read	% of exonic region well	Average Read	% of exonic region well
	Depth (n=636)	covered *	Depth (n=68)	covered *
CFTR	54	96.7%	37.4	100%
CYP2C19	56	99.0%	36.2	100%
СҮР2С9	57	98.7%	36.6	100%
CYP2D6	123.5	98.3%	24.9	75.2%
СҮРЗА5	55	98.0%	37.0	100%
DPYD	59	99.3%	35.4	98.7%
G6PD	56	90.3%	15.7	41.5%
HLA-B	78	92.0%	19.7	44.5%
IFNL3	136	100%	25.5	84.4%
SLCO1B1	42	93.1%	37.5	98.2%
TPMT	60	100%	40.2	100%
UGT1A1	67	86.0%	33.9	99.4%
VKORC1	61	77.6%	23.2	64.8%

* A genomic position is well covered if the 95% of patients have read depth higher than 10x at the position

Coverage of VKORC1

VKORC1 (NM_024006)

Summary

- Both WES and WGS provide high quality genotyping calls using standard pipeline (e.g. GATK).
- WES is missing important variants in several genes due to lack of interrogation, including VKORC1, IFNL3, CYP3A5*3, CYP2C19*17
- WGS has lower call rates in genes involved in CNV, including *CYP2D6* and *G6PD*. For *G6PD*, gender specific QC/calls can help to improve call rate.
- Additional adjustment on standard pipeline QC (e.g. MAFraction threshold) can further improve the accuracy of WES and WGS.

Limitations

- WES and WGS were not performed in a clinical lab setting.
- NGS were not performed on standard samples with known genotypes.
- Sensitivity and specificity is difficult to estimate due to relatively small number of patients. Especially for rare variants, it is difficult to establish the accuracy.

Future

- Targeted sequencing using NGS technology would be more cost effective in the implementation of pharmacogenomics. E.g. PGRNseq (*Rasmussen-Torvik LJ, et. al CPT 2014*)
- Tailored algorithms can provide better results, e.g. Constellation for CYP2D6 (Twist GP, et al, Genomic Medicine 2016; Gaedigk GA, ASHG 2015)
- Needs to establish informatic pipeline to interpret NGS into action alleles. PharmCAT effort by PharmGKB to provide tools to interpret standard NGS output files (VCF) to starred alleles, e.g TPMT*3A, which can be used in downstream clinical decision making. (<u>https://github.com/PharmGKB/PharmCAT</u>)
- New version Affymetrix DMET array will be introduced soon, and could address some of the limitation of DMET array v1.

Acknowledgement

St Jude Children's Research Hospital

Mary V. Relling, PharmD

William E. Evans, PharmD

Jun Yang, PhD

Charles Mullighan, MD

Gang Wu, PhD

Colton Smith, PhD

Medical College of Wisconsin

Ulrich Broeckel, MD

Pediatric Cancer Genome Project